Cargando…
mbkmeans: Fast clustering for single cell data using mini-batch k-means
Single-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput technology to measure genome-wide gene expression at the single-cell level. One of the most common analyses of scRNA-seq data detects distinct subpopulations of cells through the use of unsupervised clustering algorithms....
Autores principales: | Hicks, Stephanie C., Liu, Ruoxi, Ni, Yuwei, Purdom, Elizabeth, Risso, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864438/ https://www.ncbi.nlm.nih.gov/pubmed/33497379 http://dx.doi.org/10.1371/journal.pcbi.1008625 |
Ejemplares similares
-
Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference
por: Perraudeau, Fanny, et al.
Publicado: (2017) -
clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets
por: Risso, Davide, et al.
Publicado: (2018) -
Fast and memory-efficient scRNA-seq k-means clustering with various distances
por: Baker, Daniel N., et al.
Publicado: (2021) -
Fast batch searching for protein homology based on compression and clustering
por: Ge, Hongwei, et al.
Publicado: (2017) -
BBKNN: fast batch alignment of single cell transcriptomes
por: Polański, Krzysztof, et al.
Publicado: (2019)