Cargando…
Machine learning-based prediction of in-hospital mortality using admission laboratory data: A retrospective, single-site study using electronic health record data
Risk assessment of in-hospital mortality of patients at the time of hospitalization is necessary for determining the scale of required medical resources for the patient depending on the patient’s severity. Because recent machine learning application in the clinical area has been shown to enhance pre...
Autores principales: | Seki, Tomohisa, Kawazoe, Yoshimasa, Ohe, Kazuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864463/ https://www.ncbi.nlm.nih.gov/pubmed/33544775 http://dx.doi.org/10.1371/journal.pone.0246640 |
Ejemplares similares
-
Pathway importance by graph convolutional network and Shapley additive explanations in gene expression phenotype of diffuse large B-cell lymphoma
por: Hayakawa, Jin, et al.
Publicado: (2022) -
A Querying Method over RDF-ized Health Level Seven v2.5 Messages Using Life Science Knowledge Resources
por: Kawazoe, Yoshimasa, et al.
Publicado: (2016) -
Accuracy of Machine Learning Models to Predict Mortality in COVID-19 Infection Using the Clinical and Laboratory Data at the Time of Admission
por: Tabatabaie, Mohsen, et al.
Publicado: (2021) -
A clinical specific BERT developed using a huge Japanese clinical text corpus
por: Kawazoe, Yoshimasa, et al.
Publicado: (2021) -
Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS)
por: Tabak, Ying P, et al.
Publicado: (2014)