Cargando…

Design and Implementation of Fast Spoken Foul Language Recognition with Different End-to-End Deep Neural Network Architectures

Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual’s character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorsh...

Descripción completa

Detalles Bibliográficos
Autores principales: Ba Wazir, Abdulaziz Saleh, Karim, Hezerul Abdul, Abdullah, Mohd Haris Lye, AlDahoul, Nouar, Mansor, Sarina, Fauzi, Mohammad Faizal Ahmad, See, John, Naim, Ahmad Syazwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864503/
https://www.ncbi.nlm.nih.gov/pubmed/33494254
http://dx.doi.org/10.3390/s21030710
Descripción
Sumario:Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual’s character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.