Cargando…

Osteogenically-induced exosomes stimulate osteogenesis of human adipose-derived stem cells

Exosomes exhibit great therapeutic potential in bone tissue engineering. The study aimed to investigate whether the exosomes derived from human adipose-derived stem cells (hADSCs-Exos) during different time-span of osteogenic differentiation could promote osteogenesis. The appropriate concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Mengru, Liu, Yang, Qin, Hongzhi, Tong, Shuang, Sun, Qiang, Wang, Ting, Zhang, Hua, Cui, Mengying, Guo, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864848/
https://www.ncbi.nlm.nih.gov/pubmed/33216281
http://dx.doi.org/10.1007/s10561-020-09867-8
Descripción
Sumario:Exosomes exhibit great therapeutic potential in bone tissue engineering. The study aimed to investigate whether the exosomes derived from human adipose-derived stem cells (hADSCs-Exos) during different time-span of osteogenic differentiation could promote osteogenesis. The appropriate concentrations of hADSCs-Exos to enhance the proliferation, migration and osteogenesis of hADSCs-Exos were also examined. PKH67 labelled hADSCs-Exos was used to detect the internalization ability of hADSCs. The osteogenic differentiation abilities of hADSCs after treatment with hADSCs-Exos was evaluated by Alizarin red staining (ARS). The proliferation and migration of hADSCs was examined by cell counting kit-8 and wound healing assay, respectively. The expression of exosomal surface markers and osteoblast-related protein of hADSCs was assessed by Western blot. PKH67-labelled exosomes were internalized by hADSCs after 4 h incubation. ARS showed that the amount of mineralized nodules in Exo(1−14d) group was significantly higher than that in Exo(15−28d) group. hADSCs-Exos could promote the proliferation and migration capacity of hADSCs. Western blot analysis showed that after hADSCs-Exos treatment, ALP and RUNX2 were significantly enhanced. Specially, the Exo(1−14d) group of 15 μg/mL significantly upregulated the expression of RUNX2 than the other exosomes treated groups. Our findings suggest that exosomes secreted by hADSCs during osteogenic induction for 1–14 days could be efficiently internalized by hADSCs and could induce osteogenic differentiation of hADSCs. Moreover, administration of Exo(1−14d) at 15 μg/mL promoted the proliferation and migration of hADSCs. In conclusion, our research confirmed that comprised of hADSCs-Exos and hADSCs may provide a new therapeutic paradigm for bone tissue engineering.