Cargando…

Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients

Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a co...

Descripción completa

Detalles Bibliográficos
Autores principales: Jimenez-Solem, Espen, Petersen, Tonny S., Hansen, Casper, Hansen, Christian, Lioma, Christina, Igel, Christian, Boomsma, Wouter, Krause, Oswin, Lorenzen, Stephan, Selvan, Raghavendra, Petersen, Janne, Nyeland, Martin Erik, Ankarfeldt, Mikkel Zöllner, Virenfeldt, Gert Mehl, Winther-Jensen, Matilde, Linneberg, Allan, Ghazi, Mostafa Mehdipour, Detlefsen, Nicki, Lauritzen, Andreas David, Smith, Abraham George, de Bruijne, Marleen, Ibragimov, Bulat, Petersen, Jens, Lillholm, Martin, Middleton, Jon, Mogensen, Stine Hasling, Thorsen-Meyer, Hans-Christian, Perner, Anders, Helleberg, Marie, Kaas-Hansen, Benjamin Skov, Bonde, Mikkel, Bonde, Alexander, Pai, Akshay, Nielsen, Mads, Sillesen, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864944/
https://www.ncbi.nlm.nih.gov/pubmed/33547335
http://dx.doi.org/10.1038/s41598-021-81844-x
_version_ 1783647746632187904
author Jimenez-Solem, Espen
Petersen, Tonny S.
Hansen, Casper
Hansen, Christian
Lioma, Christina
Igel, Christian
Boomsma, Wouter
Krause, Oswin
Lorenzen, Stephan
Selvan, Raghavendra
Petersen, Janne
Nyeland, Martin Erik
Ankarfeldt, Mikkel Zöllner
Virenfeldt, Gert Mehl
Winther-Jensen, Matilde
Linneberg, Allan
Ghazi, Mostafa Mehdipour
Detlefsen, Nicki
Lauritzen, Andreas David
Smith, Abraham George
de Bruijne, Marleen
Ibragimov, Bulat
Petersen, Jens
Lillholm, Martin
Middleton, Jon
Mogensen, Stine Hasling
Thorsen-Meyer, Hans-Christian
Perner, Anders
Helleberg, Marie
Kaas-Hansen, Benjamin Skov
Bonde, Mikkel
Bonde, Alexander
Pai, Akshay
Nielsen, Mads
Sillesen, Martin
author_facet Jimenez-Solem, Espen
Petersen, Tonny S.
Hansen, Casper
Hansen, Christian
Lioma, Christina
Igel, Christian
Boomsma, Wouter
Krause, Oswin
Lorenzen, Stephan
Selvan, Raghavendra
Petersen, Janne
Nyeland, Martin Erik
Ankarfeldt, Mikkel Zöllner
Virenfeldt, Gert Mehl
Winther-Jensen, Matilde
Linneberg, Allan
Ghazi, Mostafa Mehdipour
Detlefsen, Nicki
Lauritzen, Andreas David
Smith, Abraham George
de Bruijne, Marleen
Ibragimov, Bulat
Petersen, Jens
Lillholm, Martin
Middleton, Jon
Mogensen, Stine Hasling
Thorsen-Meyer, Hans-Christian
Perner, Anders
Helleberg, Marie
Kaas-Hansen, Benjamin Skov
Bonde, Mikkel
Bonde, Alexander
Pai, Akshay
Nielsen, Mads
Sillesen, Martin
author_sort Jimenez-Solem, Espen
collection PubMed
description Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.
format Online
Article
Text
id pubmed-7864944
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78649442021-02-08 Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients Jimenez-Solem, Espen Petersen, Tonny S. Hansen, Casper Hansen, Christian Lioma, Christina Igel, Christian Boomsma, Wouter Krause, Oswin Lorenzen, Stephan Selvan, Raghavendra Petersen, Janne Nyeland, Martin Erik Ankarfeldt, Mikkel Zöllner Virenfeldt, Gert Mehl Winther-Jensen, Matilde Linneberg, Allan Ghazi, Mostafa Mehdipour Detlefsen, Nicki Lauritzen, Andreas David Smith, Abraham George de Bruijne, Marleen Ibragimov, Bulat Petersen, Jens Lillholm, Martin Middleton, Jon Mogensen, Stine Hasling Thorsen-Meyer, Hans-Christian Perner, Anders Helleberg, Marie Kaas-Hansen, Benjamin Skov Bonde, Mikkel Bonde, Alexander Pai, Akshay Nielsen, Mads Sillesen, Martin Sci Rep Article Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings. Nature Publishing Group UK 2021-02-05 /pmc/articles/PMC7864944/ /pubmed/33547335 http://dx.doi.org/10.1038/s41598-021-81844-x Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Jimenez-Solem, Espen
Petersen, Tonny S.
Hansen, Casper
Hansen, Christian
Lioma, Christina
Igel, Christian
Boomsma, Wouter
Krause, Oswin
Lorenzen, Stephan
Selvan, Raghavendra
Petersen, Janne
Nyeland, Martin Erik
Ankarfeldt, Mikkel Zöllner
Virenfeldt, Gert Mehl
Winther-Jensen, Matilde
Linneberg, Allan
Ghazi, Mostafa Mehdipour
Detlefsen, Nicki
Lauritzen, Andreas David
Smith, Abraham George
de Bruijne, Marleen
Ibragimov, Bulat
Petersen, Jens
Lillholm, Martin
Middleton, Jon
Mogensen, Stine Hasling
Thorsen-Meyer, Hans-Christian
Perner, Anders
Helleberg, Marie
Kaas-Hansen, Benjamin Skov
Bonde, Mikkel
Bonde, Alexander
Pai, Akshay
Nielsen, Mads
Sillesen, Martin
Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title_full Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title_fullStr Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title_full_unstemmed Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title_short Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
title_sort developing and validating covid-19 adverse outcome risk prediction models from a bi-national european cohort of 5594 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864944/
https://www.ncbi.nlm.nih.gov/pubmed/33547335
http://dx.doi.org/10.1038/s41598-021-81844-x
work_keys_str_mv AT jimenezsolemespen developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT petersentonnys developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT hansencasper developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT hansenchristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT liomachristina developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT igelchristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT boomsmawouter developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT krauseoswin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT lorenzenstephan developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT selvanraghavendra developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT petersenjanne developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT nyelandmartinerik developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT ankarfeldtmikkelzollner developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT virenfeldtgertmehl developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT wintherjensenmatilde developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT linnebergallan developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT ghazimostafamehdipour developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT detlefsennicki developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT lauritzenandreasdavid developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT smithabrahamgeorge developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT debruijnemarleen developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT ibragimovbulat developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT petersenjens developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT lillholmmartin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT middletonjon developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT mogensenstinehasling developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT thorsenmeyerhanschristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT perneranders developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT hellebergmarie developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT kaashansenbenjaminskov developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT bondemikkel developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT bondealexander developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT paiakshay developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT nielsenmads developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients
AT sillesenmartin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients