Cargando…
Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a co...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864944/ https://www.ncbi.nlm.nih.gov/pubmed/33547335 http://dx.doi.org/10.1038/s41598-021-81844-x |
_version_ | 1783647746632187904 |
---|---|
author | Jimenez-Solem, Espen Petersen, Tonny S. Hansen, Casper Hansen, Christian Lioma, Christina Igel, Christian Boomsma, Wouter Krause, Oswin Lorenzen, Stephan Selvan, Raghavendra Petersen, Janne Nyeland, Martin Erik Ankarfeldt, Mikkel Zöllner Virenfeldt, Gert Mehl Winther-Jensen, Matilde Linneberg, Allan Ghazi, Mostafa Mehdipour Detlefsen, Nicki Lauritzen, Andreas David Smith, Abraham George de Bruijne, Marleen Ibragimov, Bulat Petersen, Jens Lillholm, Martin Middleton, Jon Mogensen, Stine Hasling Thorsen-Meyer, Hans-Christian Perner, Anders Helleberg, Marie Kaas-Hansen, Benjamin Skov Bonde, Mikkel Bonde, Alexander Pai, Akshay Nielsen, Mads Sillesen, Martin |
author_facet | Jimenez-Solem, Espen Petersen, Tonny S. Hansen, Casper Hansen, Christian Lioma, Christina Igel, Christian Boomsma, Wouter Krause, Oswin Lorenzen, Stephan Selvan, Raghavendra Petersen, Janne Nyeland, Martin Erik Ankarfeldt, Mikkel Zöllner Virenfeldt, Gert Mehl Winther-Jensen, Matilde Linneberg, Allan Ghazi, Mostafa Mehdipour Detlefsen, Nicki Lauritzen, Andreas David Smith, Abraham George de Bruijne, Marleen Ibragimov, Bulat Petersen, Jens Lillholm, Martin Middleton, Jon Mogensen, Stine Hasling Thorsen-Meyer, Hans-Christian Perner, Anders Helleberg, Marie Kaas-Hansen, Benjamin Skov Bonde, Mikkel Bonde, Alexander Pai, Akshay Nielsen, Mads Sillesen, Martin |
author_sort | Jimenez-Solem, Espen |
collection | PubMed |
description | Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings. |
format | Online Article Text |
id | pubmed-7864944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78649442021-02-08 Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients Jimenez-Solem, Espen Petersen, Tonny S. Hansen, Casper Hansen, Christian Lioma, Christina Igel, Christian Boomsma, Wouter Krause, Oswin Lorenzen, Stephan Selvan, Raghavendra Petersen, Janne Nyeland, Martin Erik Ankarfeldt, Mikkel Zöllner Virenfeldt, Gert Mehl Winther-Jensen, Matilde Linneberg, Allan Ghazi, Mostafa Mehdipour Detlefsen, Nicki Lauritzen, Andreas David Smith, Abraham George de Bruijne, Marleen Ibragimov, Bulat Petersen, Jens Lillholm, Martin Middleton, Jon Mogensen, Stine Hasling Thorsen-Meyer, Hans-Christian Perner, Anders Helleberg, Marie Kaas-Hansen, Benjamin Skov Bonde, Mikkel Bonde, Alexander Pai, Akshay Nielsen, Mads Sillesen, Martin Sci Rep Article Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings. Nature Publishing Group UK 2021-02-05 /pmc/articles/PMC7864944/ /pubmed/33547335 http://dx.doi.org/10.1038/s41598-021-81844-x Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Jimenez-Solem, Espen Petersen, Tonny S. Hansen, Casper Hansen, Christian Lioma, Christina Igel, Christian Boomsma, Wouter Krause, Oswin Lorenzen, Stephan Selvan, Raghavendra Petersen, Janne Nyeland, Martin Erik Ankarfeldt, Mikkel Zöllner Virenfeldt, Gert Mehl Winther-Jensen, Matilde Linneberg, Allan Ghazi, Mostafa Mehdipour Detlefsen, Nicki Lauritzen, Andreas David Smith, Abraham George de Bruijne, Marleen Ibragimov, Bulat Petersen, Jens Lillholm, Martin Middleton, Jon Mogensen, Stine Hasling Thorsen-Meyer, Hans-Christian Perner, Anders Helleberg, Marie Kaas-Hansen, Benjamin Skov Bonde, Mikkel Bonde, Alexander Pai, Akshay Nielsen, Mads Sillesen, Martin Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title | Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title_full | Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title_fullStr | Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title_full_unstemmed | Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title_short | Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients |
title_sort | developing and validating covid-19 adverse outcome risk prediction models from a bi-national european cohort of 5594 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864944/ https://www.ncbi.nlm.nih.gov/pubmed/33547335 http://dx.doi.org/10.1038/s41598-021-81844-x |
work_keys_str_mv | AT jimenezsolemespen developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT petersentonnys developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT hansencasper developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT hansenchristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT liomachristina developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT igelchristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT boomsmawouter developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT krauseoswin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT lorenzenstephan developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT selvanraghavendra developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT petersenjanne developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT nyelandmartinerik developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT ankarfeldtmikkelzollner developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT virenfeldtgertmehl developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT wintherjensenmatilde developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT linnebergallan developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT ghazimostafamehdipour developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT detlefsennicki developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT lauritzenandreasdavid developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT smithabrahamgeorge developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT debruijnemarleen developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT ibragimovbulat developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT petersenjens developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT lillholmmartin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT middletonjon developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT mogensenstinehasling developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT thorsenmeyerhanschristian developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT perneranders developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT hellebergmarie developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT kaashansenbenjaminskov developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT bondemikkel developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT bondealexander developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT paiakshay developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT nielsenmads developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients AT sillesenmartin developingandvalidatingcovid19adverseoutcomeriskpredictionmodelsfromabinationaleuropeancohortof5594patients |