Cargando…

Universal law for the vibrational density of states of liquids

An analytical derivation of the vibrational density of states (DOS) of liquids, and, in particular, of its characteristic linear in frequency low-energy regime, has always been elusive because of the presence of an infinite set of purely imaginary modes—the instantaneous normal modes (INMs). By comb...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaccone, Alessio, Baggioli, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865170/
https://www.ncbi.nlm.nih.gov/pubmed/33495319
http://dx.doi.org/10.1073/pnas.2022303118
Descripción
Sumario:An analytical derivation of the vibrational density of states (DOS) of liquids, and, in particular, of its characteristic linear in frequency low-energy regime, has always been elusive because of the presence of an infinite set of purely imaginary modes—the instantaneous normal modes (INMs). By combining an analytic continuation of the Plemelj identity to the complex plane with the overdamped dynamics of the INMs, we derive a closed-form analytic expression for the low-frequency DOS of liquids. The obtained result explains, from first principles, the widely observed linear in frequency term of the DOS in liquids, whose slope appears to increase with the average lifetime of the INMs. The analytic results are robustly confirmed by fitting simulations data for Lennard-Jones liquids, and they also recover the Arrhenius law for the average relaxation time of the INMs, as expected.