Cargando…
Patch Attention Layer of Embedding Handcrafted Features in CNN for Facial Expression Recognition
Recognizing facial expression has attracted much more attention due to its broad range of applications in human–computer interaction systems. Although facial representation is crucial to final recognition accuracy, traditional handcrafted representations only reflect shallow characteristics and it i...
Autores principales: | Liang, Xingcan, Xu, Linsen, Liu, Jinfu, Liu, Zhipeng, Cheng, Gaoxin, Xu, Jiajun, Liu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865259/ https://www.ncbi.nlm.nih.gov/pubmed/33513723 http://dx.doi.org/10.3390/s21030833 |
Ejemplares similares
-
CNN-LSTM Facial Expression Recognition Method Fused with Two-Layer Attention Mechanism
por: Ming, Ye, et al.
Publicado: (2022) -
Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots
por: Liu, Zhipeng, et al.
Publicado: (2022) -
Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson's Disease Dysgraphia in a Multilingual Dataset
por: Galaz, Zoltan, et al.
Publicado: (2022) -
An Intelligent handcrafted feature selection using Archimedes optimization algorithm for facial analysis
por: Neggaz, Imène, et al.
Publicado: (2022) -
Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted
por: Khalid, Ahmed, et al.
Publicado: (2023)