Cargando…
Deep Convolutional and LSTM Networks on Multi-Channel Time Series Data for Gait Phase Recognition
With an ageing society comes the increased prevalence of gait disorders. The restriction of mobility leads to a considerable reduction in the quality of life, because associated falls increase morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations. For tha...
Autores principales: | Kreuzer, David, Munz, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865343/ https://www.ncbi.nlm.nih.gov/pubmed/33503947 http://dx.doi.org/10.3390/s21030789 |
Ejemplares similares
-
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Gait Trajectory and Gait Phase Prediction Based on an LSTM Network
por: Su, Binbin, et al.
Publicado: (2020) -
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
por: Su, Binbin, et al.
Publicado: (2020) -
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection
por: Toma, Tabassum Islam, et al.
Publicado: (2023) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023)