Cargando…
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
The design and application of Soft Sensors (SSs) in the process industry is a growing research field, which needs to mediate problems of model accuracy with data availability and computational complexity. Black-box machine learning (ML) methods are often used as an efficient tool to implement SSs. M...
Autores principales: | Curreri, Francesco, Patanè, Luca, Xibilia, Maria Gabriella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865368/ https://www.ncbi.nlm.nih.gov/pubmed/33530476 http://dx.doi.org/10.3390/s21030823 |
Ejemplares similares
-
A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network
por: Guesbaya, Mounir, et al.
Publicado: (2023) -
Groundwater quality prediction based on LSTM RNN: An Iranian experience
por: Valadkhan, D., et al.
Publicado: (2022) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
Splice-site identification for exon prediction using bidirectional LSTM-RNN approach
por: Singh, Noopur, et al.
Publicado: (2022) -
A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy
por: Najafi, Tahereh, et al.
Publicado: (2022)