Cargando…

Untargeted Metabolomics Unveil Changes in Autotrophic and Mixotrophic Galdieria sulphuraria Exposed to High-Light Intensity

The thermoacidophilic red alga Galdieria sulphuraria has been optimizing a photosynthetic system for low-light conditions over billions of years, thriving in hot and acidic endolithic habitats. The growth of G. sulphuraria in the laboratory is very much dependent on light and substrate supply. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lu, Sanchez-Arcos, Carlos, Pohnert, Georg, Wei, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865508/
https://www.ncbi.nlm.nih.gov/pubmed/33513853
http://dx.doi.org/10.3390/ijms22031247
Descripción
Sumario:The thermoacidophilic red alga Galdieria sulphuraria has been optimizing a photosynthetic system for low-light conditions over billions of years, thriving in hot and acidic endolithic habitats. The growth of G. sulphuraria in the laboratory is very much dependent on light and substrate supply. Here, higher cell densities in G. sulphuraria under high-light conditions were obtained, although reductions in photosynthetic pigments were observed, which indicated this alga might be able to relieve the effects caused by photoinhibition. We further describe an extensive untargeted metabolomics study to reveal metabolic changes in autotrophic and mixotrophic G. sulphuraria grown under high and low light intensities. The up-modulation of bilayer lipids, that help generate better-ordered lipid domains (e.g., ergosterol) and keep optimal membrane thickness and fluidity, were observed under high-light exposure. Moreover, high-light conditions induced changes in amino acids, amines, and amide metabolism. Compared with the autotrophic algae, higher accumulations of osmoprotectant sugars and sugar alcohols were recorded in the mixotrophic G. sulphuraria. This response can be interpreted as a measure to cope with stress due to the high concentration of organic carbon sources. Our results indicate how G. sulphuraria can modulate its metabolome to maintain energetic balance and minimize harmful effects under changing environments.