Cargando…
Fast Multi-Focus Fusion Based on Deep Learning for Early-Stage Embryo Image Enhancement
Background: Cell detection and counting is of essential importance in evaluating the quality of early-stage embryo. Full automation of this process remains a challenging task due to different cell size, shape, the presence of incomplete cell boundaries, partially or fully overlapping cells. Moreover...
Autores principales: | Raudonis, Vidas, Paulauskaite-Taraseviciene, Agne, Sutiene, Kristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865517/ https://www.ncbi.nlm.nih.gov/pubmed/33525420 http://dx.doi.org/10.3390/s21030863 |
Ejemplares similares
-
Towards the automation of early-stage human embryo development detection
por: Raudonis, Vidas, et al.
Publicado: (2019) -
Towards Early Poultry Health Prediction through Non-Invasive and Computer Vision-Based Dropping Classification
por: Nakrosis, Arnas, et al.
Publicado: (2023) -
Geriatric Care Management System Powered by the IoT and Computer Vision Techniques
por: Paulauskaite-Taraseviciene, Agne, et al.
Publicado: (2023) -
Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force
por: Ostasevicius, Vytautas, et al.
Publicado: (2021) -
A Machine Learning Approach for Wear Monitoring of End Mill by Self-Powering Wireless Sensor Nodes
por: Ostasevicius, Vytautas, et al.
Publicado: (2021)