Cargando…
Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms
The monitoring of heritage objects is necessary due to their continuous deterioration over time. Therefore, the joint use of the most up-to-date inspection techniques with the most innovative data processing algorithms plays an important role to apply the required prevention and conservation tasks i...
Autores principales: | Garrido, Iván, Erazo-Aux, Jorge, Lagüela, Susana, Sfarra, Stefano, Ibarra-Castanedo, Clemente, Pivarčiová, Elena, Gargiulo, Gianfranco, Maldague, Xavier, Arias, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865573/ https://www.ncbi.nlm.nih.gov/pubmed/33499344 http://dx.doi.org/10.3390/s21030750 |
Ejemplares similares
-
Development of Thermal Principles for the Automation of the Thermographic Monitoring of Cultural Heritage
por: Garrido, Iván, et al.
Publicado: (2020) -
Multiscale Analysis of Solar Loading Thermographic Signals for Wall Structure Inspection †
por: Tu, Katherine, et al.
Publicado: (2021) -
Thermal imaging dataset from composite material academic samples inspected by pulsed thermography
por: Erazo-Aux, Jorge, et al.
Publicado: (2020) -
Defect Detection and Depth Estimation in Composite Materials for Pulsed Thermography Images by Nonuniform Heating Correction and Oriented Gradient Information
por: Erazo-Aux, Jorge, et al.
Publicado: (2023) -
Thermographic Imaging in Cultural Heritage: A Short Review
por: Dritsa, Vasiliki, et al.
Publicado: (2022)