Cargando…
Integration of SMP with PVDF Unimorph for Bending Enhancement
Heat generation in active/passive layer-based piezoelectric actuators is unavoidable due to the mechanical, dielectric, and resistive losses in the material. In this work, a polyvinylidene fluoride (PVDF)-based unimorph cantilever actuator is developed with simulation and experimental studies on the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865686/ https://www.ncbi.nlm.nih.gov/pubmed/33525465 http://dx.doi.org/10.3390/polym13030415 |
Sumario: | Heat generation in active/passive layer-based piezoelectric actuators is unavoidable due to the mechanical, dielectric, and resistive losses in the material. In this work, a polyvinylidene fluoride (PVDF)-based unimorph cantilever actuator is developed with simulation and experimental studies on the effect of DC high voltages on heat production in the PVDF layer. A layer of one-way shape memory polymers (1W-SMPs) is integrated in the actuator to exploit the heat produced to increase the bending angle. The length and mounting location of the SMP layer impacts the bending of the actuator; by using an SMP layer with a length equal to half of the PVDF layer at the center of the unimorph actuator, the absolute bending angle is increased to 40° compared to the base piezo bending angle of 4° at 20 V/µm. |
---|