Cargando…
Robust Visual Tracking with Reliable Object Information and Kalman Filter
Object information significantly affects the performance of visual tracking. However, it is difficult to obtain accurate target foreground information because of the existence of challenging scenarios, such as occlusion, background clutter, drastic change of appearance, and so forth. Traditional cor...
Autores principales: | Chen, Hang, Zhang, Weiguo, Yan, Danghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865692/ https://www.ncbi.nlm.nih.gov/pubmed/33525624 http://dx.doi.org/10.3390/s21030889 |
Ejemplares similares
-
Learning Geometry Information of Target for Visual Object Tracking with Siamese Networks
por: Chen, Hang, et al.
Publicado: (2021) -
Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter
por: Zhang, Guowei, et al.
Publicado: (2022) -
Learning Local–Global Multiple Correlation Filters for Robust Visual Tracking with Kalman Filter Redetection
por: Zhang, Jianming, et al.
Publicado: (2021) -
Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor
por: Wu, Hao, et al.
Publicado: (2016) -
HKSiamFC: Visual-Tracking Framework Using Prior Information Provided by Staple and Kalman Filter
por: Li, Chenpu, et al.
Publicado: (2020)