Cargando…

Modified Biochanin A Release from Dual pH- and Thermo-Responsive Copolymer Hydrogels

The temperature- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid), p(NIPAM-co-AA), copolymer was synthesized by free radical polymerization and examined as a carrier for modified release of biochanin A. Biochanin A is a biologically active methoxylated isoflavone which exhibits estrogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Gajić, Ivana, Ilić-Stojanović, Snežana, Dinić, Ana, Zdravković, Aleksandar, Stanojević, Ljiljana, Nikolić, Vesna, Nikolić, Ljubiša
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865815/
https://www.ncbi.nlm.nih.gov/pubmed/33572749
http://dx.doi.org/10.3390/polym13030426
Descripción
Sumario:The temperature- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid), p(NIPAM-co-AA), copolymer was synthesized by free radical polymerization and examined as a carrier for modified release of biochanin A. Biochanin A is a biologically active methoxylated isoflavone which exhibits estrogenic and other pharmacological activities. Due to its poor aqueous solubility and extensive first-pass metabolism, biochanin A has low bioavailability. The aim of this work was to incorporate biochanin A into the synthesized p(NIPAM-co-AA) copolymer and to examine its release at the body temperature and pH values that correspond to pH values of vaginal and rectal cavities. The amount of released biochanin A was monitored by the ultra-visible spectroscopy (UV-Vis) method. The structure of synthesized p(NIPAM-co-AA) copolymer and copolymer with incorporated biochanin A were characterized by using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. The content of residual monomers in the synthesized copolymer was analyzed by using the high-pressure liquid chromatography (HPLC) method. The swelling behavior of p(NIPAM-co-AA) copolymer was monitored in relation to the temperature and pH values of the surrounding medium. For modelling the process of p(NIPAM-co-AA) copolymer swelling, the full three-level factorial design was applied.