Cargando…
Batch Similarity Based Triplet Loss Assembled into Light-Weighted Convolutional Neural Networks for Medical Image Classification
In many medical image classification tasks, there is insufficient image data for deep convolutional neural networks (CNNs) to overcome the over-fitting problem. The light-weighted CNNs are easy to train but they usually have relatively poor classification performance. To improve the classification a...
Autores principales: | Huang, Zhiwen, Zhou, Quan, Zhu, Xingxing, Zhang, Xuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865867/ https://www.ncbi.nlm.nih.gov/pubmed/33498800 http://dx.doi.org/10.3390/s21030764 |
Ejemplares similares
-
Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification
por: Zhang, Jianming, et al.
Publicado: (2020) -
Four-way classification of Alzheimer’s disease using deep Siamese convolutional neural network with triplet-loss function
por: Hajamohideen, Faizal, et al.
Publicado: (2023) -
Convolution neural network with batch normalization and inception-residual modules for Android malware classification
por: Liu, TianYue, et al.
Publicado: (2022) -
High Similarity Image Recognition and Classification Algorithm Based on Convolutional Neural Network
por: Liu, Zhizhe, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023)