Cargando…
Signal Deconvolution and Generative Topographic Mapping Regression for Solid-State NMR of Multi-Component Materials
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on native structures and the dynamics for predicting and designing the physical properties of multi-component solid materials. However, such an analysis is difficult because of the broad and overlapping spectra of these...
Autores principales: | Yamada, Shunji, Chikayama, Eisuke, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865946/ https://www.ncbi.nlm.nih.gov/pubmed/33499371 http://dx.doi.org/10.3390/ijms22031086 |
Ejemplares similares
-
Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time–Frequency Analysis and Probabilistic Sparse Matrix Factorization
por: Yamada, Shunji, et al.
Publicado: (2020) -
InterSpin: Integrated Supportive Webtools for Low-
and High-Field NMR Analyses Toward Molecular Complexity
por: Yamada, Shunji, et al.
Publicado: (2019) -
Materials informatics approach using domain modelling for exploring structure–property relationships of polymers
por: Hara, Koki, et al.
Publicado: (2022) -
Correction: Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
por: Chikayama, Eisuke, et al.
Publicado: (2009) -
Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
por: Chikayama, Eisuke, et al.
Publicado: (2008)