Cargando…
End-to-End Deep Learning by MCU Implementation: An Intelligent Gripper for Shape Identification
This paper introduces a real-time processing and classification of raw sensor data using a convolutional neural network (CNN). The established system is a microcontroller-unit (MCU) implementation of an intelligent gripper for shape identification of grasped objects. The pneumatic gripper has two em...
Autores principales: | Hung, Chung-Wen, Zeng, Shi-Xuan, Lee, Ching-Hung, Li, Wei-Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865984/ https://www.ncbi.nlm.nih.gov/pubmed/33525633 http://dx.doi.org/10.3390/s21030891 |
Ejemplares similares
-
Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper
por: Lee, Ji-Hyeong, et al.
Publicado: (2019) -
An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
por: Ramezani Dooraki, Amir, et al.
Publicado: (2018) -
Autonomous detection and sorting of litter using deep learning and soft robotic grippers
por: Almanzor, Elijah, et al.
Publicado: (2022) -
RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
por: Alam, Syed Samiul, et al.
Publicado: (2023) -
Soft Robotic Grippers for Biological Sampling on Deep Reefs
por: Galloway, Kevin C., et al.
Publicado: (2016)