Cargando…
Computer Vision-Based Bridge Damage Detection Using Deep Convolutional Networks with Expectation Maximum Attention Module
Cracks and exposed steel bars are the main factors that affect the service life of bridges. It is necessary to detect the surface damage during regular bridge inspections. Due to the complex structure of bridges, automatically detecting bridge damage is a challenging task. In the field of crack clas...
Autores principales: | Qiao, Wenting, Ma, Biao, Liu, Qiangwei, Wu, Xiaoguang, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866005/ https://www.ncbi.nlm.nih.gov/pubmed/33530484 http://dx.doi.org/10.3390/s21030824 |
Ejemplares similares
-
Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
por: Qiao, Wenting, et al.
Publicado: (2021) -
Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision
por: Zhong, Bineng, et al.
Publicado: (2016) -
Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique
por: Li, Gang, et al.
Publicado: (2020) -
Computer Vision System for Mango Fruit Defect Detection Using Deep Convolutional Neural Network
por: Nithya, R., et al.
Publicado: (2022) -
A guide to convolutional neural networks for computer vision
por: Khan, Salman, et al.
Publicado: (2018)