Cargando…
Recognition of Abnormal Chest Compression Depth Using One-Dimensional Convolutional Neural Networks
When the displacement of an object is evaluated using sensor data, its movement back to the starting point can be used to correct the measurement error of the sensor. In medicine, the movements of chest compressions also involve a reciprocating movement back to the starting point. The traditional me...
Autores principales: | Zhao, Liang, Bao, Yu, Zhang, Yu, Ye, Ruidong, Zhang, Aijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866008/ https://www.ncbi.nlm.nih.gov/pubmed/33513994 http://dx.doi.org/10.3390/s21030846 |
Ejemplares similares
-
Pavement Roughness Grade Recognition Based on One-dimensional Residual Convolutional Neural Network
por: Xu, Juncai, et al.
Publicado: (2023) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Tang, Yu-Xing, et al.
Publicado: (2020) -
Deep convolutional neural network for rib fracture recognition on chest radiographs
por: Huang, Shu-Tien, et al.
Publicado: (2023) -
Bioluminescence Tomography Based on One-Dimensional Convolutional Neural Networks
por: Yu, Jingjing, et al.
Publicado: (2021) -
Convolutional-de-convolutional neural networks for recognition of surgical workflow
por: Chen, Yu-wen, et al.
Publicado: (2022)