Cargando…
Human Plasma and Recombinant Hemopexins: Heme Binding Revisited
Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme pa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866118/ https://www.ncbi.nlm.nih.gov/pubmed/33530421 http://dx.doi.org/10.3390/ijms22031199 |
_version_ | 1783648006526992384 |
---|---|
author | Karnaukhova, Elena Owczarek, Catherine Schmidt, Peter Schaer, Dominik J. Buehler, Paul W. |
author_facet | Karnaukhova, Elena Owczarek, Catherine Schmidt, Peter Schaer, Dominik J. Buehler, Paul W. |
author_sort | Karnaukhova, Elena |
collection | PubMed |
description | Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293F(TM) (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX–heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX–heme interactions and potentially novel HPX fusion constructs. |
format | Online Article Text |
id | pubmed-7866118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78661182021-02-07 Human Plasma and Recombinant Hemopexins: Heme Binding Revisited Karnaukhova, Elena Owczarek, Catherine Schmidt, Peter Schaer, Dominik J. Buehler, Paul W. Int J Mol Sci Article Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293F(TM) (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX–heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX–heme interactions and potentially novel HPX fusion constructs. MDPI 2021-01-26 /pmc/articles/PMC7866118/ /pubmed/33530421 http://dx.doi.org/10.3390/ijms22031199 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Karnaukhova, Elena Owczarek, Catherine Schmidt, Peter Schaer, Dominik J. Buehler, Paul W. Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title | Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title_full | Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title_fullStr | Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title_full_unstemmed | Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title_short | Human Plasma and Recombinant Hemopexins: Heme Binding Revisited |
title_sort | human plasma and recombinant hemopexins: heme binding revisited |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866118/ https://www.ncbi.nlm.nih.gov/pubmed/33530421 http://dx.doi.org/10.3390/ijms22031199 |
work_keys_str_mv | AT karnaukhovaelena humanplasmaandrecombinanthemopexinshemebindingrevisited AT owczarekcatherine humanplasmaandrecombinanthemopexinshemebindingrevisited AT schmidtpeter humanplasmaandrecombinanthemopexinshemebindingrevisited AT schaerdominikj humanplasmaandrecombinanthemopexinshemebindingrevisited AT buehlerpaulw humanplasmaandrecombinanthemopexinshemebindingrevisited |