Cargando…
Non-Communication Decentralized Multi-Robot Collision Avoidance in Grid Map Workspace with Double Deep Q-Network
This paper presents a novel decentralized multi-robot collision avoidance method with deep reinforcement learning, which is not only suitable for the large-scale grid map workspace multi-robot system, but also directly processes Lidar signals instead of communicating between the robots. According to...
Autores principales: | Chen, Lin, Zhao, Yongting, Zhao, Huanjun, Zheng, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866139/ https://www.ncbi.nlm.nih.gov/pubmed/33513856 http://dx.doi.org/10.3390/s21030841 |
Ejemplares similares
Ejemplares similares
-
Human Arm Motion Prediction for Collision Avoidance in a Shared Workspace
por: Zheng, Pu, et al.
Publicado: (2022) -
Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning
por: Chen, Guangda, et al.
Publicado: (2020) -
Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace
por: Marini, Francesca, et al.
Publicado: (2016) -
Robot Navigation in Complex Workspaces Employing Harmonic Maps and Adaptive Artificial Potential Fields
por: Vlantis, Panagiotis, et al.
Publicado: (2023) -
Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments
por: Ferrera, Eduardo, et al.
Publicado: (2018)