Cargando…

Fabrication of New Demulsifiers Employing the Waste Polyethylene Terephthalate and their Demulsification Efficiency for Heavy Crude Oil Emulsions

Two novel amphiphilic polyethylene amine terephthalate have been prepared via the glycolsis of polyethylene terephthalate (PET). The product, bis (2-hydroxyethyl terephthalate) (BHET), was converted to the corresponding dialkyl halide, bis(2-chloroethyl) terephthalate (BCET), using thionyl chloride...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdullah, Mahmood M. S., Al-Lohedan, Hamad A., Atta, Ayman M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866224/
https://www.ncbi.nlm.nih.gov/pubmed/33499387
http://dx.doi.org/10.3390/molecules26030589
Descripción
Sumario:Two novel amphiphilic polyethylene amine terephthalate have been prepared via the glycolsis of polyethylene terephthalate (PET). The product, bis (2-hydroxyethyl terephthalate) (BHET), was converted to the corresponding dialkyl halide, bis(2-chloroethyl) terephthalate (BCET), using thionyl chloride (TC). This dialkyl compound was used for alkylation of dodecyl amine (DOA) and tetraethylenepentamine (TEPA) or pentaethylenehexamine (PEHA) to form the corresponding polyethylene amine terephthalate, i.e., DOAT and DOAP, respectively. Their chemical structure, surface tension, interfacial tension (IFT), and dynamic light scattering (DLS) were determined using different techniques. The efficiency of the prepared polyethylene amine terephthalate to demulsify water in heavy crude (W/O) emulsions was also determined and found to increase as their concentrations increased. Moreover, DOAT showed faster and higher efficiency, and cleaner separation than DOAP.