Cargando…
Auto-Tiler: Variable-Dimension Autoencoder with Tiling for Compressing Intermediate Feature Space of Deep Neural Networks for Internet of Things
Due to limited resources of the Internet of Things (IoT) edge devices, deep neural network (DNN) inference requires collaboration with cloud server platforms, where DNN inference is partitioned and offloaded to high-performance servers to reduce end-to-end latency. As data-intensive intermediate fea...
Autores principales: | Park, Jeongsoo, Kim, Jungrae, Ko, Jong Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866250/ https://www.ncbi.nlm.nih.gov/pubmed/33572784 http://dx.doi.org/10.3390/s21030896 |
Ejemplares similares
-
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Intrusion Detection Model for Industrial Internet of Things Based on Improved Autoencoder
por: Zhang, Wumei, et al.
Publicado: (2022) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Benchmarking variational AutoEncoders on cancer transcriptomics data
por: Eltager, Mostafa, et al.
Publicado: (2023) -
Filling space with hypercubes of two sizes – The pythagorean tiling in higher dimensions
por: Führer, Jakob
Publicado: (2022)