Cargando…
Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs
Both nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations are routinely used in understanding the conformational space sampled by peptides in the solution state. To investigate the role of single-residue change in the ensemble of conformations sampled by a set of heptapeptides, A...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866422/ https://www.ncbi.nlm.nih.gov/pubmed/33573010 http://dx.doi.org/10.3390/ijms22031364 |
_version_ | 1783648072649146368 |
---|---|
author | Krishnan, V. V. Bentley, Timothy Xiong, Alina Maitra, Kalyani |
author_facet | Krishnan, V. V. Bentley, Timothy Xiong, Alina Maitra, Kalyani |
author_sort | Krishnan, V. V. |
collection | PubMed |
description | Both nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations are routinely used in understanding the conformational space sampled by peptides in the solution state. To investigate the role of single-residue change in the ensemble of conformations sampled by a set of heptapeptides, AEVXEVG with X = L, F, A, or G, comprehensive NMR, and MD simulations were performed. The rationale for selecting the particular model peptides is based on the high variability in the occurrence of tri-peptide E*L between the transmembrane β-barrel (TMB) than in globular proteins. The ensemble of conformations sampled by E*L was compared between the three sets of ensembles derived from NMR spectroscopy, MD simulations with explicit solvent, and the random coil conformations. In addition to the estimation of global determinants such as the radius of gyration of a large sample of structures, the ensembles were analyzed using principal component analysis (PCA). In general, the results suggest that the -EVL- peptide indeed adopts a conformational preference that is distinctly different not only from a random distribution but also from other peptides studied here. The relatively straightforward approach presented herein could help understand the conformational preferences of small peptides in the solution state. |
format | Online Article Text |
id | pubmed-7866422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78664222021-02-07 Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs Krishnan, V. V. Bentley, Timothy Xiong, Alina Maitra, Kalyani Int J Mol Sci Article Both nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations are routinely used in understanding the conformational space sampled by peptides in the solution state. To investigate the role of single-residue change in the ensemble of conformations sampled by a set of heptapeptides, AEVXEVG with X = L, F, A, or G, comprehensive NMR, and MD simulations were performed. The rationale for selecting the particular model peptides is based on the high variability in the occurrence of tri-peptide E*L between the transmembrane β-barrel (TMB) than in globular proteins. The ensemble of conformations sampled by E*L was compared between the three sets of ensembles derived from NMR spectroscopy, MD simulations with explicit solvent, and the random coil conformations. In addition to the estimation of global determinants such as the radius of gyration of a large sample of structures, the ensembles were analyzed using principal component analysis (PCA). In general, the results suggest that the -EVL- peptide indeed adopts a conformational preference that is distinctly different not only from a random distribution but also from other peptides studied here. The relatively straightforward approach presented herein could help understand the conformational preferences of small peptides in the solution state. MDPI 2021-01-29 /pmc/articles/PMC7866422/ /pubmed/33573010 http://dx.doi.org/10.3390/ijms22031364 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Krishnan, V. V. Bentley, Timothy Xiong, Alina Maitra, Kalyani Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title | Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title_full | Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title_fullStr | Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title_full_unstemmed | Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title_short | Conformational Ensembles by NMR and MD Simulations in Model Heptapeptides with Select Tri-Peptide Motifs |
title_sort | conformational ensembles by nmr and md simulations in model heptapeptides with select tri-peptide motifs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866422/ https://www.ncbi.nlm.nih.gov/pubmed/33573010 http://dx.doi.org/10.3390/ijms22031364 |
work_keys_str_mv | AT krishnanvv conformationalensemblesbynmrandmdsimulationsinmodelheptapeptideswithselecttripeptidemotifs AT bentleytimothy conformationalensemblesbynmrandmdsimulationsinmodelheptapeptideswithselecttripeptidemotifs AT xiongalina conformationalensemblesbynmrandmdsimulationsinmodelheptapeptideswithselecttripeptidemotifs AT maitrakalyani conformationalensemblesbynmrandmdsimulationsinmodelheptapeptideswithselecttripeptidemotifs |