Cargando…

Dynamic Temperature Management of Near-Sensor Processing for Energy-Efficient High-Fidelity Imaging

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movement. Many researchers advocate pushing processing close to the sensor to substantially reduce data movement. However, continuous near-sensor processing raises sensor temperature, impairing imagin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kodukula, Venkatesh, Katrawala, Saad, Jones, Britton, Wu, Carole-Jean, LiKamWa, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866500/
https://www.ncbi.nlm.nih.gov/pubmed/33573185
http://dx.doi.org/10.3390/s21030926
Descripción
Sumario:Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movement. Many researchers advocate pushing processing close to the sensor to substantially reduce data movement. However, continuous near-sensor processing raises sensor temperature, impairing imaging/vision fidelity. We characterize the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. Our characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, our characterization also identifies opportunities—unique to the needs of near-sensor processing—to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand. Based on our characterization, we propose and investigate two thermal management strategies—stop-capture-go and seasonal migration—for imaging-aware thermal management. For our evaluated tasks, our policies save up to 53% of system power with negligible performance impact and sustained image fidelity.