Cargando…

Validation of Real-Time Kinematic (RTK) Devices on Sheep to Detect Grazing Movement Leaders and Social Networks in Merino Ewes

Understanding social behaviour in livestock groups requires accurate geo-spatial localisation data over time which is difficult to obtain in the field. Automated on-animal devices may provide a solution. This study introduced an Real-Time-Kinematic Global Navigation Satellite System (RTK-GNSS) local...

Descripción completa

Detalles Bibliográficos
Autores principales: Keshavarzi, Hamideh, Lee, Caroline, Johnson, Mark, Abbott, David, Ni, Wei, Campbell, Dana L. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866524/
https://www.ncbi.nlm.nih.gov/pubmed/33573163
http://dx.doi.org/10.3390/s21030924
Descripción
Sumario:Understanding social behaviour in livestock groups requires accurate geo-spatial localisation data over time which is difficult to obtain in the field. Automated on-animal devices may provide a solution. This study introduced an Real-Time-Kinematic Global Navigation Satellite System (RTK-GNSS) localisation device (RTK rover) based on an RTK module manufactured by the company u-blox (Thalwil, Switzerland) that was assembled in a box and harnessed to sheep backs. Testing with 7 sheep across 4 days confirmed RTK rover tracking of sheep movement continuously with accuracy of approximately 20 cm. Individual sheep geo-spatial data were used to observe the sheep that first moved during a grazing period (movement leaders) in the one-hectare test paddock as well as construct social networks. Analysis of the optimum location update rate, with a threshold distance of 20 cm or 30 cm, showed that location sampling at a rate of 1 sample per second for 1 min followed by no samples for 4 min or 9 min, detected social networks as accurately as continuous location measurements at 1 sample every 5 s. The RTK rover acquired precise data on social networks in one sheep flock in an outdoor field environment with sampling strategies identified to extend battery life.