Cargando…

Hybrid Layers of Donor-Acceptor Copolymers with Homogenous Silver Nanoparticle Coverage for Photonic Applications

Hybrid layers of donor-acceptor (D-A) copolymers containing N,N′-dialkylperylene-3,4,9,10-tetracarboxydiimide electron-acceptor units covered with silver nanoparticles (Ag-NPs) were prepared by electrochemical doping of pristine layers during reduction processes. In situ optical absorption spectra o...

Descripción completa

Detalles Bibliográficos
Autores principales: Cimrová, Věra, Eom, Sangwon, Pokorná, Veronika, Kang, Youngjong, Výprachtický, Drahomír
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866533/
https://www.ncbi.nlm.nih.gov/pubmed/33573074
http://dx.doi.org/10.3390/polym13030439
Descripción
Sumario:Hybrid layers of donor-acceptor (D-A) copolymers containing N,N′-dialkylperylene-3,4,9,10-tetracarboxydiimide electron-acceptor units covered with silver nanoparticles (Ag-NPs) were prepared by electrochemical doping of pristine layers during reduction processes. In situ optical absorption spectra of the layers were recorded during the formation of Ag-NP coverage. The hybrid layers were characterized by absorption spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX). In the absorption spectra of the hybrid layers, a surface plasmon band characteristic of Ag-NPs appeared. Significant improvements in light absorption due to the plasmonic effects of Ag NPs were observed. Stable Ag-NPs with an average diameter of 41–63 nm were formed on the surface, as proven by SEM and XPS. The Ag-NP coverage and size depended on the hybrid layer preparation conditions and on the copolymer composition. The metallic character of the Ag-NPs was proven by XPS. The location in the surface layer was further confirmed by EDX analysis. To the best of our knowledge, this is the first report on such hybrid layers having the potential for a variety of photonic and electronic applications.