Cargando…

WSN-SLAP: Secure and Lightweight Mutual Authentication Protocol for Wireless Sensor Networks

Wireless sensor networks (WSN) are widely used to provide users with convenient services such as health-care, and smart home. To provide convenient services, sensor nodes in WSN environments collect and send the sensing data to the gateway. However, it can suffer from serious security issues because...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Deok Kyu, Yu, Sung Jin, Lee, Joon Young, Son, Seung Hwan, Park, Young Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866822/
https://www.ncbi.nlm.nih.gov/pubmed/33573308
http://dx.doi.org/10.3390/s21030936
Descripción
Sumario:Wireless sensor networks (WSN) are widely used to provide users with convenient services such as health-care, and smart home. To provide convenient services, sensor nodes in WSN environments collect and send the sensing data to the gateway. However, it can suffer from serious security issues because susceptible messages are exchanged through an insecure channel. Therefore, secure authentication protocols are necessary to prevent security flaws in WSN. In 2020, Moghadam et al. suggested an efficient authentication and key agreement scheme in WSN. Unfortunately, we discover that Moghadam et al.’s scheme cannot prevent insider and session-specific random number leakage attacks. We also prove that Moghadam et al.’s scheme does not ensure perfect forward secrecy. To prevent security vulnerabilities of Moghadam et al.’s scheme, we propose a secure and lightweight mutual authentication protocol for WSNs (WSN-SLAP). WSN-SLAP has the resistance from various security drawbacks, and provides perfect forward secrecy and mutual authentication. We prove the security of WSN-SLAP by using Burrows-Abadi-Needham (BAN) logic, Real-or-Random (ROR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. In addition, we evaluate the performance of WSN-SLAP compared with existing related protocols. We demonstrate that WSN-SLAP is more secure and suitable than previous protocols for WSN environments.