Cargando…
A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection †
Falls are dangerous for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance. This paper extends our previous work on the development of a Fall Detection System (FDS) using an inertial measurement unit worn at the waist....
Autores principales: | Zurbuchen, Nicolas, Wilde, Adriana, Bruegger, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866865/ https://www.ncbi.nlm.nih.gov/pubmed/33573347 http://dx.doi.org/10.3390/s21030938 |
Ejemplares similares
-
Detecting Falls with Wearable Sensors Using Machine Learning Techniques
por: Özdemir, Ahmet Turan, et al.
Publicado: (2014) -
A Study of One-Class Classification Algorithms for Wearable Fall Sensors
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
A Class-Imbalanced Deep Learning Fall Detection Algorithm Using Wearable Sensors
por: Zhang, Jing, et al.
Publicado: (2021) -
On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection
por: Tsinganos, Panagiotis, et al.
Publicado: (2018) -
Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors
por: Delahoz, Yueng Santiago, et al.
Publicado: (2014)