Cargando…
Enhancing Obstructive Apnea Disease Detection Using Dual-Tree Complex Wavelet Transform-Based Features and the Hybrid “K-Means, Recursive Least-Squares” Learning for the Radial Basis Function Network
BACKGROUND: The obstructive sleep apnea (OSA) detection has become a hot research topic because of the high risk of this disease. In this paper, we tested some powerful and low computational signal processing techniques for this task and compared their results with the recent achievements in OSA det...
Autores principales: | Ostadieh, Javad, Amirani, Mehdi Chehel, Valizadeh, Morteza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866948/ https://www.ncbi.nlm.nih.gov/pubmed/33575194 http://dx.doi.org/10.4103/jmss.JMSS_69_19 |
Ejemplares similares
-
Introducing the Hybrid “K-means, RLS” Learning for the RBF Network in Obstructive Apnea Disease Detection using Dual-tree Complex Wavelet Transform Based Features
por: Ostadieh, Javad, et al.
Publicado: (2020) -
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Recursive least squares background prediction of univariate syndromic surveillance data
por: Najmi, Amir-Homayoon, et al.
Publicado: (2009) -
Recursive N-Way Partial Least Squares for Brain-Computer Interface
por: Eliseyev, Andrey, et al.
Publicado: (2013) -
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016)