Cargando…

Thermal Properties of Surface-Modified and Cross-Linked Boron Nitride/Polyethylene Glycol Composite as Phase Change Material

A thermally conductive phase change material (PCM) was fabricated using polyethylene glycol (PEG) and boron nitride (BN). However, the interfacial adhesion between the BN and the PEG was poor, hindering efficient heat conduction. Grafting polyvinyl alcohol (PVA) onto the surface of BN and cross-link...

Descripción completa

Detalles Bibliográficos
Autores principales: Wie, Jaehyun, Kim, Jooheon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866983/
https://www.ncbi.nlm.nih.gov/pubmed/33572613
http://dx.doi.org/10.3390/polym13030456
Descripción
Sumario:A thermally conductive phase change material (PCM) was fabricated using polyethylene glycol (PEG) and boron nitride (BN). However, the interfacial adhesion between the BN and the PEG was poor, hindering efficient heat conduction. Grafting polyvinyl alcohol (PVA) onto the surface of BN and cross-linking due to hydrogen bonding between the hydroxyl groups in PVA and oxygen atoms in PEG improved the wettability of fillers. By employing this strategy, we achieved a thermal conductivity value of 0.89 W/mK, a 286% improvement compared to the thermal conductivity of the pristine PEG (0.23 W/mK). Although the latent heat of composites decreased due to the mobility of the polymer chain, the value was still reasonable for PCM applications.