Cargando…

Design Study of a Round Window Piezoelectric Transducer for Active Middle Ear Implants

This report describes the design of a new piezoelectric transducer for round window (RW)-driven middle ear implants. The transducer consists of a piezoelectric element, gold-coated copper bellows, silicone elastomer (polydimethylsiloxane, PDMS), metal cylinder (tungsten), and titanium housing. The p...

Descripción completa

Detalles Bibliográficos
Autor principal: Shin, Dong Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866998/
https://www.ncbi.nlm.nih.gov/pubmed/33572684
http://dx.doi.org/10.3390/s21030946
Descripción
Sumario:This report describes the design of a new piezoelectric transducer for round window (RW)-driven middle ear implants. The transducer consists of a piezoelectric element, gold-coated copper bellows, silicone elastomer (polydimethylsiloxane, PDMS), metal cylinder (tungsten), and titanium housing. The piezoelectric element is fixed to the titanium housing and mechanical resonance is generated by the interaction of the bellows, PDMS, and tungsten cylinder. The dimensions of PDMS and the tungsten cylinder with output characteristics suitable for compensation of sensorineural hearing loss were derived by mechanical vibrational analysis (equivalent mechanical model and finite element analysis (FEA)). Based on the results of FEA, the RW piezoelectric transducer was implemented, and bench tests were performed under no-load conditions to confirm the output characteristics. The transducer generates an average displacement of 219.6 nm in the flat band (0.1–1 kHz); the resonance frequency is 2.3 kHz. To evaluate the output characteristics, the response was compared to that of an earlier transducer. When driven by the same voltage (6 V(p)), the flat band displacement averaged 30 nm larger than that of the other transducer, and no anti-resonance was noted. Therefore, we expect that the new transducer can serve as an output device for hearing aids, and that it will improve speech recognition and treat high-frequency sensorineural hearing loss more effectively.