Cargando…
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review
SIMPLE SUMMARY: The increasing interest in implementing artificial intelligence in radiomic models has occurred alongside advancement in the tools used for computer-aided diagnosis. Such tools typically apply both statistical and machine learning methodologies to assess the various modalities used i...
Autores principales: | Chaddad, Ahmad, Kucharczyk, Michael J., Cheddad, Abbas, Clarke, Sharon E., Hassan, Lama, Ding, Shuxue, Rathore, Saima, Zhang, Mingli, Katib, Yousef, Bahoric, Boris, Abikhzer, Gad, Probst, Stephan, Niazi, Tamim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867056/ https://www.ncbi.nlm.nih.gov/pubmed/33535569 http://dx.doi.org/10.3390/cancers13030552 |
Ejemplares similares
-
Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects
por: Chaddad, Ahmad, et al.
Publicado: (2023) -
Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Combined Long-Term Androgen Deprivation and Pelvic Radiotherapy in the Post-operative Management of Pathologically Defined High-Risk Prostate Cancer Patients: Results of the Prospective Phase II McGill 0913 Study
por: Kucharczyk, Michael Jonathan, et al.
Publicado: (2020) -
Advances in PARP Inhibitors for Prostate Cancer
por: Tisseverasinghe, Steven, et al.
Publicado: (2023)