Cargando…

Machine Embroidered Sensors for Limb Joint Movement-Monitoring Smart Clothing

In this study, a strain gauge sensor based on a change of contact or network structure between conductive materials was implemented using the handle-machine embroidery technique, and the variables (embroidery shape, embroidery distance, embroidery size, and implementation location) affecting its per...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Su Youn, Lee, Joo-Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867096/
https://www.ncbi.nlm.nih.gov/pubmed/33535385
http://dx.doi.org/10.3390/s21030949
Descripción
Sumario:In this study, a strain gauge sensor based on a change of contact or network structure between conductive materials was implemented using the handle-machine embroidery technique, and the variables (embroidery shape, embroidery distance, embroidery size, and implementation location) affecting its performance were studied. As a result of Experiment I on the structure of embroidery suitable for joint motion monitoring, the embroidery distance, rather than the embroidery size, was found to have a significant effect on the electric resistance changes caused by elongation. Based on the results of Experiment I, two types of zigzag embroideries, four types of embroideries with few contact points, and two types of embroideries with more contact points (all with short distances (2.0)) were selected for Experiment II (the dummy motion experiment). As a result of the dummy motion experiment, it was found that the locations of the suitable embroidered sensors for joint motion monitoring was the HJP (Hinge Joint Position) in the ‘types without a contact point’ (zigzag) and the LHJP (Lower Hinge Joint Position) in the ‘types with more contact points’. On the other hand, although there was no consistency among the ‘types with few contact points’, the resistance changes measured by the 2CP and 7CP embroidered sensors showed similar figures and patterns, and the HJP location was most suitable. The resistance changes measured by the 4CP and 6CP embroidered sensors exhibited no consistent patterns, but the LHJP locations were more suitable. These results indicate that the location of the HJP is suitable for measuring joint motion in the ‘type without a contact point’, and the location of the LHJP is suitable for measuring joint motion when the number of contact points exceeds a certain limit. Among them, the average resistance change of the 9CP sensor located at the LHJP was 40 Ω with the smallest standard deviation of less than 1, and it is thus considered to have the best performance among all the sensors.