Cargando…
A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders
Condition monitoring of industrial equipment, combined with machine learning algorithms, may significantly improve maintenance activities on modern cyber-physical production systems. However, data of proper quality and of adequate quantity, modeling both good operational conditions as well as abnorm...
Autores principales: | Bampoula, Xanthi, Siaterlis, Georgios, Nikolakis, Nikolaos, Alexopoulos, Kosmas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867153/ https://www.ncbi.nlm.nih.gov/pubmed/33535642 http://dx.doi.org/10.3390/s21030972 |
Ejemplares similares
-
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019) -
Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms
por: Alsaade, Fawaz Waselallah, et al.
Publicado: (2023) -
Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders
por: Wang, Qu, et al.
Publicado: (2019) -
Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
por: Ibrahim, Mohamed R., et al.
Publicado: (2021) -
Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
por: Huang, Jianying, et al.
Publicado: (2022)