Cargando…
Blind Source Separation Method Based on Neural Network with Bias Term and Maximum Likelihood Estimation Criterion
Convergence speed and steady-state source separation performance are crucial for enable engineering applications of blind source separation methods. The modification of the loss function of the blind source separation algorithm and optimization of the algorithm to improve its performance from the pe...
Autores principales: | Liu, Sheng, Wang, Bangmin, Zhang, Lanyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867157/ https://www.ncbi.nlm.nih.gov/pubmed/33535650 http://dx.doi.org/10.3390/s21030973 |
Ejemplares similares
-
A maximum likelihood estimator of neural network synaptic weights
por: Taouali, Wahiba, et al.
Publicado: (2013) -
Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies
por: Hashemi, Meraj, et al.
Publicado: (2021) -
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009) -
Maximum likelihood estimation of functional relationships
por: Nagelkerke, Nico J D
Publicado: (1992) -
The nonparametric maximum likelihood estimator for middle-censored data
por: Shen, Pao-Sheng
Publicado: (2011)