Cargando…
Silk-Based Materials for Hard Tissue Engineering
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867174/ https://www.ncbi.nlm.nih.gov/pubmed/33535662 http://dx.doi.org/10.3390/ma14030674 |
Sumario: | Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply. |
---|