Cargando…
Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review
SIMPLE SUMMARY: Ovarian cancer represents the most lethal gynecological malignancy. Since many new drugs have been recently introduced as adjunctive treatments for this pathology, an early prediction of outcome might be helpful to further improve outcomes. Radiomics represents a recent advancement,...
Autores principales: | Rizzo, Stefania, Manganaro, Lucia, Dolciami, Miriam, Gasparri, Maria Luisa, Papadia, Andrea, Del Grande, Filippo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867247/ https://www.ncbi.nlm.nih.gov/pubmed/33540655 http://dx.doi.org/10.3390/cancers13030573 |
Ejemplares similares
-
Whole-Body Composition Features by Computed Tomography in Ovarian Cancer: Pilot Data on Survival Correlations
por: Raia, Giorgio, et al.
Publicado: (2023) -
Body composition as a predictor of chemotherapy-related toxicity in ovarian cancer patients: A systematic review
por: Rizzo, Stefania, et al.
Publicado: (2022) -
Computed Tomography–Based Body Composition in Patients With Ovarian Cancer: Association With Chemotoxicity and Prognosis
por: Del Grande, Maria, et al.
Publicado: (2021) -
Radiomics in cervical and endometrial cancer
por: Manganaro, Lucia, et al.
Publicado: (2021) -
CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset
por: Avesani, Giacomo, et al.
Publicado: (2022)