Cargando…
No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection
We propose an anomaly detection based image quality assessment method which exploits the correlations between feature maps from a pre-trained Convolutional Neural Network (CNN). The proposed method encodes the intra-layer correlation through the Gram matrix and then estimates the quality score combi...
Autores principales: | Leonardi, Marco, Napoletano, Paolo, Schettini, Raimondo, Rozza, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867270/ https://www.ncbi.nlm.nih.gov/pubmed/33540652 http://dx.doi.org/10.3390/s21030994 |
Ejemplares similares
-
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity
por: Napoletano, Paolo, et al.
Publicado: (2018) -
An Efficient Method for No-Reference Video Quality Assessment
por: Agarla, Mirko, et al.
Publicado: (2021) -
No-Reference Quality Assessment of In-Capture Distorted Videos
por: Agarla, Mirko, et al.
Publicado: (2020) -
T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods
por: Cusano, Claudio, et al.
Publicado: (2021) -
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
por: Agarla, Mirko, et al.
Publicado: (2023)