Cargando…
Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement Learning
Dynamic scheduling problems have been receiving increasing attention in recent years due to their practical implications. To realize real-time and the intelligent decision-making of dynamic scheduling, we studied dynamic permutation flowshop scheduling problem (PFSP) with new job arrival using deep...
Autores principales: | Yang, Shengluo, Xu, Zhigang, Wang, Junyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867337/ https://www.ncbi.nlm.nih.gov/pubmed/33540868 http://dx.doi.org/10.3390/s21031019 |
Ejemplares similares
-
A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems
por: Zhang, Le, et al.
Publicado: (2014) -
Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities
por: Li, Jun-qing, et al.
Publicado: (2014) -
A Reinforcement Learning Approach to Robust Scheduling of Permutation Flow Shop
por: Zhou, Tao, et al.
Publicado: (2023) -
Application of Reinforcement Learning in Multiagent Intelligent Decision-Making
por: Han, Xiaoyu
Publicado: (2022) -
No-wait two-stage flowshop problem with multi-task flexibility of the first machine
por: Dong, Jianming, et al.
Publicado: (2021)