Cargando…
Deep Learning-Based Acute Ischemic Stroke Lesion Segmentation Method on Multimodal MR Images Using a Few Fully Labeled Subjects
Acute ischemic stroke (AIS) has been a common threat to human health and may lead to severe outcomes without proper and prompt treatment. To precisely diagnose AIS, it is of paramount importance to quantitatively evaluate the AIS lesions. By adopting a convolutional neural network (CNN), many automa...
Autores principales: | Zhao, Bin, Liu, Zhiyang, Liu, Guohua, Cao, Chen, Jin, Song, Wu, Hong, Ding, Shuxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867461/ https://www.ncbi.nlm.nih.gov/pubmed/33564322 http://dx.doi.org/10.1155/2021/3628179 |
Ejemplares similares
-
CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images
por: Gheibi, Yousef, et al.
Publicado: (2023) -
Fully Automated Thrombus Segmentation on CT Images of Patients with Acute Ischemic Stroke
por: Mojtahedi, Mahsa, et al.
Publicado: (2022) -
Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR Images
por: Verma, Khushboo, et al.
Publicado: (2022) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
por: Trebeschi, Stefano, et al.
Publicado: (2017)