Cargando…
Densely connected convolutional networks-based COVID-19 screening model
The extensively utilized tool to detect novel coronavirus (COVID-19) is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and consume critical time, around 6 to 9 hours to classify the subjects as COVID-19(+) or COVID-19(-). Due to the less sensitivity of RT-PCR, it suf...
Autores principales: | Singh, Dilbag, Kumar, Vijay, Kaur, Manjit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867501/ https://www.ncbi.nlm.nih.gov/pubmed/34764584 http://dx.doi.org/10.1007/s10489-020-02149-6 |
Ejemplares similares
-
Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks
por: Singh, Dilbag, et al.
Publicado: (2020) -
DSCNet: Deep Skip Connections-Based Dense Network for ALL Diagnosis Using Peripheral Blood Smear Images
por: Kaur, Manjit, et al.
Publicado: (2023) -
Metaheuristic-based Deep COVID-19 Screening Model from Chest X-Ray Images
por: Kaur, Manjit, et al.
Publicado: (2021) -
Overview of current state of research on the application of artificial intelligence techniques for COVID-19
por: Kumar, Vijay, et al.
Publicado: (2021) -
Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification
por: B., Ashwini, et al.
Publicado: (2023)