Cargando…
Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network
The objectives were to develop and validate a Convolutional Neural Network (CNN) using local features for differentiating distal ureteral stones from pelvic phleboliths, compare the CNN method with a semi-quantitative method and with radiologists’ assessments and to evaluate whether the assessment o...
Autores principales: | Jendeberg, Johan, Thunberg, Per, Lidén, Mats |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867560/ https://www.ncbi.nlm.nih.gov/pubmed/32107579 http://dx.doi.org/10.1007/s00240-020-01180-z |
Ejemplares similares
-
Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT—prospective validation of a quantitative method
por: Jendeberg, Johan, et al.
Publicado: (2021) -
Size matters: The width and location of a ureteral stone accurately predict the chance of spontaneous passage
por: Jendeberg, Johan, et al.
Publicado: (2017) -
Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric
por: Jendeberg, Johan, et al.
Publicado: (2018) -
Application of Radiomics Model of CT Images in the Identification of Ureteral Calculus and Phlebolith
por: Yu, Qiuyue, et al.
Publicado: (2022) -
Phlebolith with dyspnoea
por: Mani, Ashwin K., et al.
Publicado: (2020)