Cargando…

MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK

MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumori...

Descripción completa

Detalles Bibliográficos
Autores principales: Na, Youjin, Hall, Ashley, Choi, Kwangmin, Hu, Liang, Rose, Jonathan, Coover, Robert A., Miller, Adam, Hennigan, Robert F., Dombi, Eva, Kim, Mi-Ok, Subramanian, Subbaya, Ratner, Nancy, Wu, Jianqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867646/
https://www.ncbi.nlm.nih.gov/pubmed/33293695
http://dx.doi.org/10.1038/s41388-020-01581-9
Descripción
Sumario:MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumorigenesis. We analyzed a miR-microarray comparing to normal and PNF SCs and identified differences in miR expression, and we validated in mouse PNFs versus normal mouse SCs by qRT-PCR. Among these, miR-155 was a top overexpressed miR, and its expression was regulated by RAS/MAPK signaling. Overexpression of miR-155 increased mature Nf1(−/−) mouse SC proliferation. In SC precursors, which model tumor initiating cells, pharmacological and genetic inhibition of miR-155 decreased PNF-derived sphere numbers in vitro and we identified Maf as a miR-155 target. In vivo, global deletion of miR-155 significantly decreased tumor number and volume, increasing mouse survival. Fluorescent nanoparticles entered PNFs, suggesting that an anti-miR might have therapeutic potential. However, treatment of established PNFs using anti-miR-155 peptide nucleic acid-loaded nanoparticles marginally decreased tumor numbers and did not reduce tumor growth. These results suggest that miR-155 plays a functional role in PNF growth and/or SC proliferation, and that targeting neurofibroma miRs is feasible, and might provide novel therapeutic opportunities.