Cargando…

In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019

BACKGROUND AND OBJECTIVES: Influenza A/H1N1pdm09 causes respiratory illness and remains a concern for public health. Since its first emergence in 2009, the virus has been continuously circulating in the form of its genetic variants. Influenza A/H1N1pdm09 surveillance is essential for uncovering emer...

Descripción completa

Detalles Bibliográficos
Autores principales: Siddiqui, Arshi, Chowdhary, Rashmi, Maan, Harjeet Singh, Goel, Sudhir Kumar, Tripathi, Nidhi, Prakash, Anil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867699/
https://www.ncbi.nlm.nih.gov/pubmed/33604005
http://dx.doi.org/10.18502/ijm.v12i5.4611
_version_ 1783648328756494336
author Siddiqui, Arshi
Chowdhary, Rashmi
Maan, Harjeet Singh
Goel, Sudhir Kumar
Tripathi, Nidhi
Prakash, Anil
author_facet Siddiqui, Arshi
Chowdhary, Rashmi
Maan, Harjeet Singh
Goel, Sudhir Kumar
Tripathi, Nidhi
Prakash, Anil
author_sort Siddiqui, Arshi
collection PubMed
description BACKGROUND AND OBJECTIVES: Influenza A/H1N1pdm09 causes respiratory illness and remains a concern for public health. Since its first emergence in 2009, the virus has been continuously circulating in the form of its genetic variants. Influenza A/H1N1pdm09 surveillance is essential for uncovering emerging variants of epidemiologic and vaccine efficacy. The present study attempts in silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India during 2009–2019. MATERIALS AND METHODS: We have investigated the antigenic drift analysis of 96 isolates’ hemagglutinin (HA) gene sequences (59 central Indian and 37 local Indian and 28 global reference HA gene sequences) of Influenza A/H1N1pdm09 viruses from 2009 to 2019. The study includes mutational (Multiple sequence Alignment), phylogenetic (Maximum Likelihood Method), and statistical analysis (Covariance and correlation) of HA sequences submitted in NCBI, IRD and GISAID from central India. RESULTS: Phylogenetic analysis indicated maximum clustering of central Indian HA gene sequences in genogroup 6B. Analysis of amino acid sequence alignment revealed changes in receptor binding site (RBS). The frequency of S220T amino acid substitution was found to be high followed by S202T, K300E A273T, K180Q. The Karl Pearson correlation coefficient (r) and covariance between the number of mutations and the death toll was found +0.246 and +100.3 respectively. CONCLUSION: The study identifies the continuous genetic variations in the HA gene sequences of circulating Influenza A/H1N1pdm09 in central India from the year 2009 to 2019. Further suggesting importance of monitoring the gradual evolution of the virus with regards to an increase in virulence, pathogenicity and vaccine efficacy timely.
format Online
Article
Text
id pubmed-7867699
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Tehran University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-78676992021-02-17 In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019 Siddiqui, Arshi Chowdhary, Rashmi Maan, Harjeet Singh Goel, Sudhir Kumar Tripathi, Nidhi Prakash, Anil Iran J Microbiol Original Article BACKGROUND AND OBJECTIVES: Influenza A/H1N1pdm09 causes respiratory illness and remains a concern for public health. Since its first emergence in 2009, the virus has been continuously circulating in the form of its genetic variants. Influenza A/H1N1pdm09 surveillance is essential for uncovering emerging variants of epidemiologic and vaccine efficacy. The present study attempts in silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India during 2009–2019. MATERIALS AND METHODS: We have investigated the antigenic drift analysis of 96 isolates’ hemagglutinin (HA) gene sequences (59 central Indian and 37 local Indian and 28 global reference HA gene sequences) of Influenza A/H1N1pdm09 viruses from 2009 to 2019. The study includes mutational (Multiple sequence Alignment), phylogenetic (Maximum Likelihood Method), and statistical analysis (Covariance and correlation) of HA sequences submitted in NCBI, IRD and GISAID from central India. RESULTS: Phylogenetic analysis indicated maximum clustering of central Indian HA gene sequences in genogroup 6B. Analysis of amino acid sequence alignment revealed changes in receptor binding site (RBS). The frequency of S220T amino acid substitution was found to be high followed by S202T, K300E A273T, K180Q. The Karl Pearson correlation coefficient (r) and covariance between the number of mutations and the death toll was found +0.246 and +100.3 respectively. CONCLUSION: The study identifies the continuous genetic variations in the HA gene sequences of circulating Influenza A/H1N1pdm09 in central India from the year 2009 to 2019. Further suggesting importance of monitoring the gradual evolution of the virus with regards to an increase in virulence, pathogenicity and vaccine efficacy timely. Tehran University of Medical Sciences 2020-10 /pmc/articles/PMC7867699/ /pubmed/33604005 http://dx.doi.org/10.18502/ijm.v12i5.4611 Text en Copyright© 2020 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license, (https://creativecommons.org/licenses/by-nc/4.0/) Non-commercial uses of the work are permitted, provided the original work is properly cited.
spellingShingle Original Article
Siddiqui, Arshi
Chowdhary, Rashmi
Maan, Harjeet Singh
Goel, Sudhir Kumar
Tripathi, Nidhi
Prakash, Anil
In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title_full In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title_fullStr In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title_full_unstemmed In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title_short In silico analysis and molecular characterization of Influenza A (H1N1) pdm09 virus circulating and causing major outbreaks in central India, 2009–2019
title_sort in silico analysis and molecular characterization of influenza a (h1n1) pdm09 virus circulating and causing major outbreaks in central india, 2009–2019
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867699/
https://www.ncbi.nlm.nih.gov/pubmed/33604005
http://dx.doi.org/10.18502/ijm.v12i5.4611
work_keys_str_mv AT siddiquiarshi insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019
AT chowdharyrashmi insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019
AT maanharjeetsingh insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019
AT goelsudhirkumar insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019
AT tripathinidhi insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019
AT prakashanil insilicoanalysisandmolecularcharacterizationofinfluenzaah1n1pdm09viruscirculatingandcausingmajoroutbreaksincentralindia20092019