Cargando…

Sleeve lobectomy after neoadjuvant chemoimmunotherapy/chemotherapy for local advanced non-small cell lung cancer

BACKGROUND: Sleeve lobectomy has been reported to be a safe procedure after neoadjuvant chemotherapy. We aim to evaluate the oncological and surgical outcomes of neoadjuvant chemoimmunotherapy (IO+C) for local advanced non-small cell lung cancer (NSCLC) patients who underwent sleeve lobectomy. METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Hengrui, Yang, Chao, Gonzalez-Rivas, Diego, Zhong, Yunpeng, He, Ping, Deng, Hongsheng, Liu, Jun, Liang, Wenhua, He, Jianxing, Li, Shuben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867787/
https://www.ncbi.nlm.nih.gov/pubmed/33569300
http://dx.doi.org/10.21037/tlcr-20-778
Descripción
Sumario:BACKGROUND: Sleeve lobectomy has been reported to be a safe procedure after neoadjuvant chemotherapy. We aim to evaluate the oncological and surgical outcomes of neoadjuvant chemoimmunotherapy (IO+C) for local advanced non-small cell lung cancer (NSCLC) patients who underwent sleeve lobectomy. METHODS: NSCLC patients that underwent sleeve lobectomy between December 2016 and December 2019 were retrospectively included. Patients were divided into two groups: neoadjuvant IO+C and chemotherapy. Oncological, intraoperative and postoperative variables were compared. RESULTS: In total, 20 patients underwent sleeve lobectomy after neoadjuvant IO+C (n=10) or chemotherapy (n=10). In the neoadjuvant IO+C group, 8/10 (80%) patients achieved a partial response (PR), 1/10 (10%) patients had a complete pathological response (CPR), and 5/10 (50%) patients achieved a major pathological response (MPR). In the neoadjuvant chemotherapy group, only 3/10 (30%) patients had PR, and 3/10 (30%) patients achieved MPR. No complications were found in the neoadjuvant IO+C group, 1 chylothorax occurred in the neoadjuvant chemotherapy group. Other peri- and postoperative outcomes were similar: bleeding volume (365.00 vs. 347.50 mL; P=0.267), operation time (291.88 vs. 287.50 min; P=0.886), chest tube duration (5.40 vs. 5.00 day; P=0.829), total drainage volume (815.50 vs. 842.50 mL; P=0.931) and the length of hospital-stay (7.00 vs. 6.56 day; P=0.915). In addition, less N1 (average number 4.70 vs. 7.40) and N2 (average number 9.80 vs. 20.10) lymph nodes were acquired in the neoadjuvant IO+C group than the neoadjuvant chemotherapy group. The number of lymph nodes positive for tumor cells was also less in the neoadjuvant IO+C group than the neoadjuvant chemotherapy group, both in N1 (0.40 vs. 1.60) and N2 (0.10 vs. 1.30). The positive lymph node ratio (LNR) was lower in the neoadjuvant IO+C group, both in N1 (0.05 vs. 0.15) and N2 (0.01 vs. 0.09). A greater destruction on elastic fiber of the blood vessels, vascular wall degeneration, fibrinoid necrosis and fibrosis, and greater pulmonary interstitial exudation were found in neoadjuvant IO+C patients compared to the neoadjuvant chemotherapy patients. CONCLUSIONS: Sleeve lobectomy for advanced NSCLC following IO+C is feasible, although the operations become more complex, neoadjuvant IO+C did not delay postoperative recovery.