Cargando…

Efficacy of a novel chest tube system in a swine model of hemothorax

BACKGROUND: Tube thoracostomy is the definitive treatment for most significant chest trauma, including injuries resulting in pneumothorax, hemothorax, and hemopneumothorax. However, traditional chest tubes fail to sufficiently remove blood up to 20% of the time (i.e., retained hemothorax), which can...

Descripción completa

Detalles Bibliográficos
Autores principales: Donaldson, Ross I., Zimmermann, Eric M., Buchanan, Oliver J., Graham, Todd L., Ross, James D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867831/
https://www.ncbi.nlm.nih.gov/pubmed/33569201
http://dx.doi.org/10.21037/jtd-20-1609
Descripción
Sumario:BACKGROUND: Tube thoracostomy is the definitive treatment for most significant chest trauma, including injuries resulting in pneumothorax, hemothorax, and hemopneumothorax. However, traditional chest tubes fail to sufficiently remove blood up to 20% of the time (i.e., retained hemothorax), which can lead to empyema and fibrothorax, as well as significant morbidity and mortality. Here we describe the use of a novel chest tube system in a swine model of hemothorax. METHODS: This was an intra-animal-paired, randomized-controlled study of hemothorax evacuation using the PleuraPath™ Thoracostomy System (PPTS) compared to a traditional chest tube in large Yorkshire-Landrace swine (75–85 kg). One liter of autologous whole blood was infused into each pleural cavity simultaneously with subsequent drainage from each device individually monitored for a total of 120 minutes, before the end of the experiment and necroscopy. RESULTS: Six animals completed the full protocol. On average, the PPTS removed 17% more blood (P=0.049) and left 19.1% less residual hemothorax (P=0.023) as compared to the standard of care during the first two hours of use. No complications or iatrogenic injury were identified in any animal for either device. CONCLUSIONS: The novel PPTS device was superior to the traditional chest tube drainage system in this acute, large-animal model of retained hemothorax. While this study supports clinical translation, further research will be required to assess efficacy and optimize device use in humans.