Cargando…

Young plasma attenuates cognitive impairment and the cortical hemorrhage area in cerebral amyloid angiopathy model mice

BACKGROUND: Cerebral amyloid angiopathy (CAA) is characterized by the deposition of β-amyloid (Aβ) in leptomeningeal vessels and penetrating arterioles. Intracerebral hemorrhage (ICH) is one of the most destructive complications in CAA. Young plasma has been shown to improve cognitive, learning, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Nan, Zhang, Xu, Gu, Zhiqiang, Su, Chunhe, Lian, Haojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867917/
https://www.ncbi.nlm.nih.gov/pubmed/33569449
http://dx.doi.org/10.21037/atm-20-8008
Descripción
Sumario:BACKGROUND: Cerebral amyloid angiopathy (CAA) is characterized by the deposition of β-amyloid (Aβ) in leptomeningeal vessels and penetrating arterioles. Intracerebral hemorrhage (ICH) is one of the most destructive complications in CAA. Young plasma has been shown to improve cognitive, learning, and memory functions in Alzheimer’s disease (AD) model mice and is a new potential therapy. However, it is not clear whether young plasma can reduce cerebral hemorrhage and improve the prognosis of neurological function in APP/PS1 (which express APP695swe and PS1-dE9 mutations) mice with CAA disease. METHODS: The Y-maze, new object recognition (NOR), forced swimming, open field, sucrose consumption, and corner tests were used to evaluate the learning and memory, cognitive ability, and emotional changes in CAA model mice. The effect of young plasma on neurogenesis was analyzed by immunofluorescence. The level of Aβ in the cerebral cortex and hippocampus of mice was measured by enzyme-linked immunosorbent assay (ELISA). Finally, the area of cortical hemorrhage in mice was analyzed by fast blue-staining. RESULTS: We proved that young plasma improved cognition, learning and memory impairment, and anxiety in CAA model mice, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. However, young plasma did not reduce the level of Aβ in the cortex and hippocampus of APP/PS1 mice. We also found that young plasma reduced the area of cerebral hemorrhage in APP/PS1 mice. CONCLUSIONS: Our results show that young plasma can improve learning and memory, cognitive impairment, and anxiety in CAA model mice and can reduce the area of cortical hemorrhage.