Cargando…
Missing data and prediction: the pattern submodel
Missing data are a common problem for both the construction and implementation of a prediction algorithm. Pattern submodels (PS)—a set of submodels for every missing data pattern that are fit using only data from that pattern—are a computationally efficient remedy for handling missing data at both s...
Autores principales: | Fletcher Mercaldo, Sarah, Blume, Jeffrey D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868046/ https://www.ncbi.nlm.nih.gov/pubmed/30203058 http://dx.doi.org/10.1093/biostatistics/kxy040 |
Ejemplares similares
-
Implant and submodeling techniques for detailed finite element study of inserts in composites
por: Gattineni, Venkateswarlu, et al.
Publicado: (2019) -
An Auxiliary Logic on Trees: on the Tower-Hardness of Logics Featuring Reachability and Submodel Reasoning
por: Mansutti, Alessio
Publicado: (2020) -
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures
por: Zheng, Jincheng, et al.
Publicado: (2021) -
Reliability Assessment of Thermocompressed Epoxy Molding Compound through Glass via Interposer Architecture by the Submodeling Simulation Approach
por: Wang, Shih-Hung, et al.
Publicado: (2022) -
Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
por: Bugmann, Harald, et al.
Publicado: (2019)